R-125 Refrigerant Fact & Info Sheet

R-125 is one of the most common refrigerants across the world yet so many people have never heard of it. While it is rare to find a direct R-125 refrigerant application, it is very common to find some of the blended refrigerants that R-125 contributes to.

The ever popular R-410A and R-404A are blended HFC refrigerants and one of the ingredients in both of these blends is R-125. Along with these there are a variety of other refrigerants comprised of R-125. So, while you may not actually see R-125 in a direct use application you will see it’s blended version of 410A, 404A, and other refrigerants in nearly every modern application.

In this article we’re going to take a deep dive on this refrigerant looking at the facts, points of note, the past, present, and what we can expect in the future for R-125.

Technical Facts

Name:R-125
Name - Scientific:Pentafluoroethane
Name (2):Freon™ 125
Name (3):HFC-125
Name (4)Genetron HFC 125
Name (5)Khladon 125
Name (6)Suva 125
Name (7)FC-125
Classification:HFC Refrigerant
Chemistry:C2HF5
Status:Phasing Down Across The World
Future:Will Most Likely Be Phased Out in 10-20 Years
Application:Supermarkets, Gas Stations, Vending/Ice Machines
Application (2):Refrigerated Transport, Industrial Refrigeration, and Much More
Replacement For:Mainly R-22 and R-502 Through Blends
Ozone Depletion Potential:0
Global Warming Potential:3,500
Global Warming Risk:VERY HIGH
Toxicity Levels:A (No Toxicity Identified.)
Flammability Levels:Class 1 -No Flame Propagation.
Lubricant Required:Synthetic Oil - Polyol Ester Oil or POE
Boiling Point:-48.5°C (-55.4°F)
Critical Temperature:66.18°C (151.124°F)
Critical Pressure:3,629 kpa
Auto ignition Temperature:Unknown
Molar Mass:120.02 g/mol
Density:1.53 g/cm3 (liquid at -48.5 °C)[1]
Melting Point:−103.0 °C (−153.4 °F; 170.2 K)
Vapor Pressure:1414.05 kPa (at 25 °C)
Manufacturers:Various Including: Honeywell, Chemours, Arkema, Mexichem, Chinese, etc.
Manufacturing Facilities:All Over Including: USA, Mexico, EU, China, and others.
Form:Gas
Color:Colorless Liquid & Vapor
Odor:Faint Ethereal Odor
EPA Certification Required:Yes, 608 certification required by January 1st, 2018.
Require Certification to Purchase?Yes, 608 certification required by January 1st, 2018.
Packaging:Bought in Bulk for Mixing - Cylinders are Rare
Bulk Purchasing:Buy R-125 in Bulk

R-125 Pros & Cons

As we all know there are no perfect refrigerants out there. Across all of the various refrigerant classifications and types there are always going to be pros and cons. Look at ammonia (R-717) for example. It is widely accepted as one of the best refrigerants out there, but it has a safety rating of B2L. That rating means that ammonia is not only slightly flammable but is also toxic. So, while you have an amazingly efficient refrigerant you also have a extraordinary safety concern when using ammonia.

When determining a refrigerant to use there are a variety of factors that are considered. These can be efficiency, safety flammability/toxicity, climate Ozone/Global Warming Potential, and operating pressures. Whatever refrigerant  that checks the most boxes will usually end up on top.

With those factors in mind let’s look at the pros and cons of R-125.

Pros

  • The big reason R-125 took off in the late 1990’s and early 2000’s was due to it NOT having any Ozone Depletion Potential. Remember folks, that the R-125 blends replaced the Ozone damaging HCFC and CFC refrigerants such as R-22 and R-502.
  • R-125 is very versatile and it can be found in nearly twenty different blends including R-410A, R-404A, and R-407C. Even today engineers are trying new blends of R-125.
  • The other big Pro with R-125 is it’s safety rating. It is rated as an A1 from ASHRAE. The A1 rating signifies that R-125 is not toxic and is not flammable. Please note though, that while R-125 is non-toxic if enough vapor is leaked into an enclosed area it can displace oxygen which can eventually lead to asphyxiation.

Cons

  • The only con that I know for R-125 is a big one. In the last decade or so there has been a lot of focus on Greenhouse Gases and the overall Global Warming Potential (GWP) of those gases. R-125 is a Greenhouse Gas and has a GWP of thirty-five hundred. It is known as a ‘Super-Pollutant.’ R-125 has one of the higher GWPs of any modern refrigerant. For a comparison the HFC R-32 refrigerant has a GWP of only six-hundred and seventy-five.

Notes on R-125

Alright folks so we’ve got the pros and cons out of the way now let’s take a look at some points of note on R-125.

R-125 came about in the mid 1990’s and early 2000’s when the world was looking for replacements to the popular CFC and HCFC refrigerants R-502 and R-22. These previous refrigerants were found to be harming the Ozone layer and were phased out by the Montreal Protocol. R-125 was safe, it was cheap, and it was efficient. R-125, and it’s many blends, were the solution to the phasing out of CFCs and HCFCs.

As I had mentioned before, R-125 is the building block of many refrigerants that we see and use throughout the world today. We’ve mentioned some of the more popular blends like 410A and 404A but now let’s take a look at all of the other blends that are out there:

  • R-402A HCFC R-125/290/22 (60±2/2±1/38±2)
  • R-402B HCFC R-125/290/22 (38±2/2±1/60±2)
  • R-408A HCFC R-125/143a/22 (7±2/46±1/47±2)
  • R-417A HFC R-125/134a/600 (46.6±1.1/50±1/3.4+.1,–.4)
  • R-417B HFC R-125/134a/600 (79±1/18.3±1/2.7+.1,–.5)
  • R-419A HFC R-125/134a/E170 (77±1/19±1/4±1)
  • R-421A HFC R-125/134a (58±1/42±1)
  • R-421B HFC R-125/134a (85±1/15±1)
  • R-422A HFC R-125/134a/600a (85.1±1/11.5±1/3.4+.1,–.4)
  • R-422B HFC R-125/134a/600a (55±1/42±1/3+.1,–.5)
  • R-422C HFC R-125/134a/600a (82±1/15±1/3+.1,–.5)
  • R-422D HFC R-125/134a/600a (65.1+.9,–1.1/31.5±1/3.4+.1,–.4)
  • R-424A HFC R-125/134a/600a/600/601a (50.5±1/47±1/.9+.1,–.2/1+.1,+.2/.6+.1,–.2)
  • R-426A HFC R-125/134a/600/601a (5.1±1/93±1/1.3+.1,–.2/.6+.1,–.2)
  • R-428A HFC R-125/143a/290/600a (77.5±1/20±1/.6+.1,–.2/1.9+.1,–.2)
  • R-434A HFC R-125/143a/134a/600a (63.2±1/18±1/16±1/2.8+.1,–.2)
  • R-437A HFC R-125/134a/600/601 (19.5+.5,–1.8/78.5+1.5,–.7/1.4+.1,–.2/.6+.1,–.2)
  • R-507[A] HFC R-125/143a (50/50)
  • R-404A HFC R-125/143a/134a (44±2/52±1/4±2)
  • R-410A HFC R-32/125 (50+.5,–1.5/50+1.5,–.5)

As you can see from the listing above there are a variety of blends and applications that can be used within these blends. R-125 is by far one of the most versatile refrigerants out there today. This is why this refrigerant can be found in nearly every home and building that utilizes air conditioning or refrigeration.Along with being used as a refrigerant R-125 is also used in fire suppression systems. This is mainly used when water is not advised as fire extinguisher option. This could be in laboratories with expensive equipment, in museums, or banks.

There was a worldwide shortage of R-125 during the summer of 2017. The majority of R-125 is sourced from China and something happened over the spring and summer of 2017 that caused the shortage to ripple across the marketplace. The most common explanation that I found was that the chemical Flurospar experienced a forty percent price increase towards the beginning of 2017. (Flurospar is a main ingredient in the R-125 refrigerant.) This price increase caused a direct effect on the price of R-125 raising it by one-hundred and thirty percent. The price increase on Flurospar was blamed on China’s strengthening of environmental laws that directly affect the mining industry. Depending on where you were in the world when this shortage hit you could have seen your prices raise by forty or fifty percent on 125 blends. In some cases though, especially over in the European Union, prices shot up hundreds of percents.

While R-125 doesn’t deplete the Ozone it does have an extremely high Global Warming Potential (GWP). The GWP’s zeroing scale is Carbon Dioxide (R-744). Carbon Dioxide has a GWP of one whereas R-125 has a GWP of thirty-five hundred. Obviously, the higher the GWP number the more damage the refrigerant does to the environment.

It is due to high GWP number that we are beginning to see various R-125 blends being phased down and in some cases completely phased out. While most countries and municipalities have focused on R-404A it is only a matter of time before everyone sets their sights on R-410A.

R-125 Past, Present, & Future

I won’t get into all of the details here, instead I will give a brief overview of what happened, where we are today, and what will be happening in the future. Firstly, let’s look at the rise of CFCs and HCFCs. These refrigerants rose to prominence in the 1950’s and 60’s. They were safe, cheap, and efficient. It was in the 1980’s that it was discovered that these refrigerants were also harming the Ozone layer. To put a stop to this the world introduced the Montreal Protocol. This signed treaty aimed at phasing out Ozone damaging refrigerants as well as other chemicals.

With the CFCs and HCFCs refrigerants going away an alternative, non Ozone depleting, refrigerant was needed. This is where the HFCs came into play. In the mid 1990’s R-12 was phased out and replaced with the HFC R-134a. A few years later is when we began to see the blended refrigerants (Made of R-125) start to replace R-22 and R-502 applications.

Ever since then HFCs and R-125 have been the standard bearer for a variety of applications including home and commercial air conditioners, supermarket refrigerators/freezers, vending machines, ice machines, refrigerated transport, and so much more.

While the Ozone was fixed the new HFC refrigerants were found to have a large effect on Global Warming due to their high Global Warming Potential (GWP). The higher the GWP the more damage the refrigerant did to the atmosphere. Pressure began to mount in Europe, Asia, and in America to slow the use of HFCs and to begin looking for alternatives.

In the European Union there are regulations in place already that are phasing down and eventually completely out HFC refrigerants such as R-134a, R-404A, and eventually R-410A. While here in America there isn’t an exact plan on when HFCs will be phased down. At one time there was through the Environmental Protection Agency, but their proposed rules were overturned by a Federal Court. There is hope though. A select few states have begun moving forward with their own HFC phase down regulations. Some of these states include California, New York, and Washington.

It doesn’t matter if we have a federally backed phase down program through the EPA or if we have a patchwork of policies and regulations that vary state to state. Whatever happens we can be assured that HFCs will be a thing of the past very soon.

Conclusion

While R-125 may be in nearly every household and commercial building it’s future is anything but bright. With each passing year more and more pressure is put on the use of R-125 and it’s blends. The Global Warming Potential is just too high, especially when there are alternative refrigerants coming out every year.

We may be stuck with R-125 for another decade or so but it’s time is limited and the countdown has begun. R-404A is the first target and then once that has been phased down the world will set it’s sights on R-410A.

For now, in 2019, we will stay the course of R-125 usage.

Relevant Web Pages about R-125