R-12 Refrigerant History

Sometimes it is worth to slow down and look in the rear view mirror and see where we have been to find out where we are going. The same analogy can be used when it comes to R-12 refrigerant. R-12 was the the ‘mother’ of all modern day refrigerants that we see and use everyday in today’s world. Without it, the world would look very different. In this article we’re going to take a brief look at where R-12 came from, how it came to be, and why it is no longer used in the world today.

In the early 1900’s the world was looking for a solution for refrigeration and air conditioning. There had been numerous experiments and trials on differing refrigerants ranging from Ammonia, Carbon Dioxide, Propane, Sulfur Dioxide, and Methyl Chloride. Each one of these refrigerants were able to provide cooling and refrigeration but they all had potential downsides. It could have been safety concerns through toxicity or flammability, high pressure, or an inflated price point. There needed to be a more viable refrigerant introduced into the marketplace.

It was in the 1930’s that a partnership was formed between two companies: General Motors and DuPont. This partnership organized by Charles Kettering of General Motors was geared towards solving this problem. Over the new few years Thomas Midgley Jr, along with a few other team members, pushed forward with the invention of ChloroFluroCarbons (CFCs) and HydroChloroFluroCarbons (HCFCs). Out of these inventions two primary refrigerants came: R-12 and R-22. The introduction of R-12 showed the world that a refrigerant was possible that was safe, economical, and easily adapted to various applications.

In just a few decades R-12 and R-22 were found in nearly every home and business across the world. The explosive growth of refrigerant and air conditioning continued to propel forwards for decades and decades. All of this came to a head in the 1980’s when a team of scientists based out of California realized that the Chlorine found in these ever popular refrigerants were causing damage to the Ozone layer. What would happen is a machine would either develop a leak, or the refrigerant would be vented, or the machine would be scrapped entirely and refrigerant would leak out. This leaked refrigerant would work it’s way up into the atmosphere and stagnate in the Stratosphere. There the Chlorine found in R-12 would degrade and harm the Ozone layer. All of this got so bad over the decades of CFC and HCFC use that a thinning of the Ozone layer began to form over the Arctic. The scientists noticing this sounded the alarm and the world’s governments took action by creating the Montreal Protocol.

The Montreal Protocol is a treaty that was signed in the late 1980’s by more then one-hundred countries. It’s goal was to rid the world of using Ozone depleting substances like CFC and HCFC refrigerants. This treaty was enacted in countries all over the world. The first target was CFC refrigerants such as R-12. In 1992 R-12 was phased out of the automotive market in the United States and was replaced with the newer HFC refrigerant known as R-134a. R-134a had the benefit of not containing Chlorine so with its usage there would be no danger to the Ozone layer. The next refrigerant to go was the CFC refrigerant known as R-502 in the mid 1990’s. As time went by there were other CFC and HCFC refrigerants phased out but the big change didn’t happen until 2010.

In today’s world R-12 is a very rare occurrence. Most machines and systems that were using it have since been retired. Like I mentioned in a previous section, the only use cases that I know of in the year 2019 are those folks who are restoring classic automobiles. Even in these cases though I believe most people are going the retrofit route and changing their systems over to R-134a. The cost of R-12 is just too expensive and we all know that a fully restored classic car is never entirely original. There are always aftermarket parts that find their way in.